
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Implementation of Backtracking Algorithm in

Minesweeper

Nayotama Pradipta - 13520089

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13520089@std.stei.itb.ac.id

Abstract— Minesweeper is a single player puzzle in which the

player’s objective is to solve all cells in a rectangular board

without detonating the mines scattered throughout the board.

Minesweeper was first released in 1989 together with Microsoft

Entertainment Pack. Most people believed that Minesweeper

involves guessing, while it may be true, this game can also be solved

strategically. Anyone can solve this puzzle with the right strategy,

including computers using a certain algorithm. That said, this

paper discusses and dissects every aspect of the backtracking

algorithm to solve the minesweeper puzzle.

Keywords—Minesweeper, Backtrack, Algorithm, Efficiency,

Depth-First Search

I. INTRODUCTION

Back in the 1980s, peripheral device in the form of mouse
was not generally used with computers. A lot of people were not
familiar with the clickable device. Minesweeper was then
created by Microsoft to help people adapt with the left and right
click of a mouse. Minesweeper itself is a board puzzle game
consisting of cells that may or may not contain “mines”, hence
the name. These mines will cause the game to end whenever
clicked, so players must only left-click the numbered cells and
right-click the mines. The player will win if he/she manage to
locate all numbered cells and avoid all mines. There are three
difficulties/levels of minesweeper, specifically as follows:

1. Beginner: 10 mines randomly scattered in a 9 by 9 board

2. Intermediate: 40 mines randomly scattered in a 16 by 16
board

3. Expert: 99 mines randomly scattered in a 16 by 30 board

 When a player runs the game, the program will initialize a
board with plain cells. The game starts when the player clicks on
one of the cells. The game should always let the first clicked cell
to be a numbered cell to prevent an early “Game Over”. The
strategy of the game lies on the value of the numbered cells. The
value of a numbered cell lies between 1 to 8 as this represents
the number of mines that are adjacent to that cell. For instance,
a cell with the number “8” means it is surrounded by mines. If a
cell is blank, then the program will display all adjacent cells until
the perimeter of the cells are numbered cells.

Figure 1. An example of a numbered cell. The flagged cells

surrounding it are mines

 A player can right-click on a cell that is suspected to be a
mine. A flag will appear on that cell, as seen in figure 1. Players
can only drop flags as much as there are mines in the board. As
an example, there are only 10 flags that a player can use in a
beginner level since there are only 10 mines in the board. In
addition to that, there is a timer in the game to indicate how much
time has passed since the player’s first move.

 Players can use simple math (additions) to finish the game,
but there are also some cases where the player must completely
guess by luck. The chances of having to guess is higher in harder
levels since there are more cells, leading to higher probabilities
of inadequate information to correctly identify a cell. Despite
that, players can calculate the probability of each cell being a
numbered or a mine cell, meaning that it does not involve wild
guesses.

 Minesweeper may be an old game and has a limited number
of dedicated players, but it certainly is a fun and challenging
puzzle that everyone should give a try. In fact, a lot of people
know Minesweeper but does not really know how to play it. This
paper is created with the hope of familiarizing everyone with
Minesweeper as well as algorithm strategies.

 A computer program can be made to solve the Minesweeper
puzzle with a high win percentage. The program may lose
whenever the information is not enough. A simple brute force
algorithm will surely do the trick, but it is memory and time
consuming. A good alternative would be the backtracking
algorithm since it does not generate unnecessary possible steps.
This paper shows a thorough implementation and analysis of the
backtracking algorithm to solve a minesweeper puzzle.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

II. THEORY

A. Backtracking Algorithm

 Backtracking is an algorithm that solves a constraint
satisfaction problem in a recursive manner. A constraint
satisfaction problem is any problem that has clear constraints
or rules. The goal in a CSP is to find the set of values that
satisfy a condition/constraint. Backtracking is an
improvement of exhaustive search since it only explores
choices that will lead to the solution. Backtracking was first
introduced in 1950 by an American mathematician D.H.
Lehmer. There are several common properties in a
backtracking algorithm:

1. Solution Space: All possible solution of the problem,
written as a set of vectors with n-tuple

2. Generator Function: A function that generates a value xk
that is a component of the solution vector

3. Bounding Function: A boolean function that will return
true whenever a set of value is leading to a solution and
not violating constraints

B. Minesweeper

Minesweeper boards are made up of cells that either

contains blank, a mine, or a number between 1 to 8.

Minesweeper can be categorized as a CSP (Constraint

Satisfaction Problem) since any cells in a board can be

represented as a variable with a domain of 0 and 1. 0

indicates that the cell is not a mine, otherwise 1. When a

numbered cell is analyzed, it becomes the constraint for the

number of mines adjacent to its neighboring cells. A

challenging problem in a Minesweeper board is when the

information known is insufficient to make a conclusion.

Guessing in minesweeper should not be done randomly as

it will not guarantee the best move. Whenever a guess

should be done, corners should always be the first choice

since it has the highest chance of being mine-free. However,

not all guesses can be strategically chosen. There are some

scenarios where the chance of a mine is 50-50 in a cell, so

the only way of moving forward is to choose either one of

the cells. Whenever this scenario occurs, it is best to directly

choose one of the cells to avoid unnecessary computation.

C. Backtracking Algorithm in Minesweeper

Backtracking is one of the possible core algorithms to

solve a Minesweeper puzzle since it fits the criteria of a

Constraint Satisfaction Problem. Backtracking algorithm is

used in Minesweeper to recursively find all possible

solutions of the cells that satisfy the constraint (Number of

mines adjacent to cells must be equal).

There are two possible ways to which backtracking

can be used in Minesweeper depending on the input:

1. Program/Player start with an entire covered board

2. Program/Player start with an entire uncovered

board, each cell has a value from 0-8 indicating

the total amount of mine surrounding it

The first case is the original Minesweeper game,

and it is a lot more complex than the second one. The

first case can be solved with Depth First Search that

uses backtracking algorithm during the search. The

second case can be solved with regular backtracking,

and it eliminates the chance of guessing since all the

information are enough to lead to the solution. This

paper includes the second case to highlight the core of

backtracking algorithm.

The general algorithm for the second is as follow:

1. Create two matrixes, one to store the resultant

board that will be updated in each recursion,

and the other one to store the visited cells

when traversing in the resultant cell.

2. If all the cells have been visited and satisfies

the constraint, then return true

3. If all the cells have been visited but it does

not satisfy the constraint, then return false

4. If false, then find an unvisited cell and mark

that cell as visited, for instance (a,b)

5. If it is possible to assign a mine to that (a,b),

then decrement the number of mines in

adjacent cell and do step 2-5 again

(recursion)

6. If the process of recursion on (a,b) returns

true, then return true, else return false

D. Depth First Search in Minesweeper

Another algorithm that can be used in Minesweeper

is Depth-First Search. DFS is an approach that also

implements the backtracking algorithm. The

backtracking in DFS is applied in the leaf nodes. DFS

should also be implemented to problems that can be

transformed in an explicit tree. In a minesweeper puzzle,

the root of the tree is the first cell clicked by the player.

From there, the search search continues to one the

direction until it is impossible to identify which cells are

mine-free. At this point, DFS uses backtracking to

another direction, and this will be recursively done until

the game ends. A good explanation of the creation of

State space Tree using DFS algorithm can be seen in the

figure below:

Figure 2. State Space Tree Creation with DFS

III. BACKTRACKING ALGORITHM IMPLEMENTATION

In the case where there are no covered cells in the

beginning, the implementation of the backtracking

algorithm can be seen below:
#define MAXM 100

#define MAXN 100

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

int dx[9] = { -1, 0, 1, -1, 0, 1,

-1, 0, 1 };

int dy[9] = { 0, 0, 0, -1, -1, -1,

1, 1, 1 };

bool isValid(int x, int y)

{

 return (x >= 0 && y >= 0 && x

< N && y < M);

}

bool canAssignMine(int

arr[MAXN][MAXM], int x, int y)

{

 if (!isValid(x, y))

 return false;

 for (int i = 0; i < 9; i++) {

 if (isValid(x + dx[i], y +

dy[i])

 && (arr[x + dx[i]][y +

dy[i]] == 0))

 return false;

 }

 for (int i = 0; i < 9; i++) {

 if (isValid(x + dx[i], y +

dy[i]))

 arr[x + dx[i]][y +

dy[i]] -= 1;

 }

 return true;

}

bool findUnvisited(bool

visited[MAXN][MAXM],

 int& x, int& y)

{

 for (x = 0; x < N; x++)

 for (y = 0; y < M; y++)

 if (!visited[x][y])

 return (true);

 return (false);

}

bool isVisitedandSatisfied(int

arr[MAXN][MAXM],

 bool

visited[MAXN][MAXM])

{

 bool done = true;

 for (int i = 0; i < N; i++) {

 for (int j = 0; j < M;

j++) {

 done = done &&

(arr[i][j] == 0) && visited[i][j];

 }

 }

 return (done);

}

bool

SolveBackTrackMinesweeper(bool

grid[MAXN][MAXM], int

arr[MAXN][MAXM], bool

visited[MAXN][MAXM])

{

 int x, y;

 if (isVisitedandSatisfied(arr,

visited))

 return true;

 if (!findUnvisited(visited, x,

y))

 return false;

 visited[x][y] = true;

 if (canAssignMine(arr, x, y))

{

 grid[x][y] = true;

 if

(SolveBackTrackMinesweeper(grid,

arr, visited))

 return true;

 grid[x][y] = false;

 for (int i = 0; i < 9;

i++) {

 if (isValid(x + dx[i],

y + dy[i]))

 arr[x + dx[i]][y +

dy[i]]++;

 }

 }

 if

(SolveBackTrackMinesweeper(grid,

arr, visited))

 return true;

 visited[x][y] = false;

 return false;

}

An input example would be an array below:
int arr[MAXN][MAXN] = {

 { 0, 0, 1, 1, 1, 0, 0, 2, 2},

 { 0, 0, 1, 1, 1, 0, 0, 2, 2},

 { 0, 0, 1, 1, 1, 0, 0, 1, 1},

 { 0, 0, 1, 2, 2, 1, 0, 0, 0},

 { 0, 1, 2, 3, 2, 1, 0, 0, 0},

 { 1, 2, 3, 3, 2, 1, 0, 0, 0},

 { 1, 2, 2, 2, 1, 1, 0, 1, 1},

 { 2, 2, 2, 1, 1, 1, 0, 1, 1},

 { 1, 1, 1, 1, 1, 1, 0, 1, 1}

};

 Or better shown in the figure 3:

Figure 3. Example of a 9 by 9 solved Minesweeper

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Figure 4. Output program, “+” means the cell contain mine

While the time taken for the program is less than

one second, it certainly cannot be ignored. This

algorithm takes 0.039 second for a 9 by 9 board, which

means that it will be take longer for the intermediate

and hard level. In fact, an experiment with a 16 by 16

minesweeper board with 40 mines took more than five

minutes to solve.

The Implementation for the first case is much

more complex than the second since not all blocks are

uncovered. In a true Minesweeper game, even with a

solvable board, a program will not be able to perfectly

solve all puzzles. In this case, Depth First Search and

Constraint Propagation Algorithm is used to create the

solution that resembles human logic. Constraint

Propagation Algorithm is similar to flagging the

obvious mines cells. The purpose of Constraint

Propagation is to eliminate all known cells and only

focus on the unknown.

There are three possible conditions for each

covered cells in a minesweeper board. The first

condition is achieved when the value of the numbered

cell is equal to the number of covered cells

surrounding it. This literally means that all covered

cells are mines. The second condition is when the

value of the numbered cell is equal to surrounding

flagged cell but there are still other covered cells. The

other covered cells can be safely assumed as numbered

cell. The last condition is when there are two or more

covered cells that cannot be determined as the first or

second condition. To solve the last condition, the

backtracking method is going to be used to search all

the possible solutions that are still true to the bounding

function.

 There are several methods/functions that should be

created to implement the minesweeper solver. These

functions include:

1. A function that returns true whenever the program

uncovers a mine cell

2. A backtracking function

• Bounding function (Constraint)

3. Remove Known Cell function (Constrain

Propagation)

The pseudocode for the core algorithm:

function search(self, cell) → void

Variable Declaration

 leftovers, sss: dictionary

 squares: list of dictionary keys

 mines_left, squares_left: integer

 solutions : array of solution

Algorithm

 leftovers  {}

 squares  list of leftovers.keys

 mines_left  self.num_mines –

self.flagged_num_mines

 squares_left  length(squares)

 solution  []

 m traversal[moves]

 if m.constraints then

 const traversal [m.constraints]

 if const not in leftovers then

 leftovers[const]  1

 else

 leftovers[const] 

leftovers[const] + 1

 if mines_left < squares_left then

 backtrack([], solutions,

self.board)

 if solutions then

 sss  {}

 i traversal [0…length(solutions)-1]

 j traversal

[0…length(solutions[i])-1]

 currSquare  squares[j]

 if currSquare not in sss then

 sss[currSquare] 

solutions[i][j]

 else

 sss[currSquare] 

sss[currSquare] + solutions[i][j]

 addSafeSquare  false

 square,count traversal [sss.items]

 if count = 0 then

 addSafeSquare  true

 self.squareToProbe.append(square)

 if not addSafeSquare then

 randomSol  randomize(0,

length(solutions) – 1)

 arr  solutions[randomSol]

 square, value traversal

[zip(squares, arr)]

 if value = 0 then

 self.squareToProbe.append(square)

 else

 squares_left 

list(set(self.board_coord –

self.marked_squares)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

 random_square  randomize(0,

len(squares_left - 1)

 next_square 

squares_left[random_square]

 self.squareToProbe.append(next_square

)

 self.start()

➔
function backtrack(input arr, solutions

: array, board: Minesweeperboard) →

List of solutions

Variable Declaration

 Valid : boolean

Algorithm

 if (length(arr) < squares_left) then

 →

 else if (sum(arr) > mines_left) then

➔
 else

 choice traversal [0,1]

 arr.append(choice)

 if sum(arr) = mines_left and

len(arr) = squares_left then

 valid 

checkSolutionValidity(board, arr)

 if valid then

 solutions.append(arr)

 backtrack (arr, solutions, board)

➔ solutions

 With the help of constraint propagation, the program works

far faster than the first program (C++). Implementation of the

backtracking algorithm is efficient as only valid solutions are

calculated. In addition to the implementation, the success rate

of the program is recorded in three different difficulties.

 For the easy difficulty, the test was conducted 100 times in

groups of 5. An easy level has a 9 by 9 board and 10 mines. The

distribution of test failure is shown in the graph below:

Graph 1. Failure Frequency for every 5 boards in easy level

 From the graph, it can be concluded that there are around

one to two failure in every 5 puzzle for an easy game.

Statistically speaking, the program has a 69% success rate for

an easy minesweeper level.

 For the intermediate difficulty, the test was conducted with

the same manner as easy difficulty. The only difference is that

the intermediate level has a 16 by 16 board and 40 mines. The

distribution of the test failure is show in the graph below:

Graph 2. Failure Frequency for every 5 boards in intermediate

level

 The graph for intermediate level shifts a little to the right, as

most of the total failure is between 2 and 3 for every 5 puzzles.

The success rate of the program is 63%.

 The same experiment is applied for the hard difficulty with

16 by 30 board and 99 mines. The following graph depicts the

distribution of failure for every 5 boards:

Graph 3. Failure Frequency for every 5 boards in hard level

 Graph 3 shows that the majority of experiments result in

failure, with 11 out of 20 being 100% failure. In total, the

success rate of the program drops to just only 15%.

IV. ANALYSIS OF THE SOLUTION

When the program receives a totally uncovered board, it can

solve the puzzle with a 100% success rate. The backtracking

algorithm is not the most efficient algorithm, this can be

seen by the considerable amount of time needed to solve an

intermediate puzzle. In fact, the time complexity of this

algorithm is

𝑂(2𝑀∗𝑁 ∗ 𝑀 ∗ 𝑁)
with M and N as the dimension of the board. The time

complexity illustrates that the time taken becomes a lot

larger for bigger boards. This is proven from the huge

difference of time between easy level and intermediate level

(From 0.039 second to more than 5 minutes).

 The second program (Starts with covered board) is

different to the first as there are chances of a failure. The

efficiency of the algorithm is much higher thanks to the

0

10

0 1 2 3 4 5

Fr
eq

u
en

cy

Total Failure

Failure Frequency for every
5 boards in easy level

0

5

10

0 1 2 3 4 5Fr
eq

u
en

cy

Total Failure

Failure Frequency of every 5
boards in Intermediate Level

0

10

20

0 1 2 3 4 5

Fr
eq

u
en

cy

Total Failure

Failure Frequency of every 5
boards in Hard level

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

constraint propagation. An obvious pattern can be seen from

the graph 1, 2, and 3. As the size of the board increases, the

success rate of the program deteriorates. This is because

larger boards allow higher chances of inadequate

information. The algorithm has a hard time in solving hard

puzzles, with most of the tests being a failure. In addition,

some of the tests took too long that the program must be

terminated and executed again. While backtracking maybe

a lot faster than brute force algorithm, it is not the most

efficient. Further modifications of the program can be made

to improve efficiency. Modifications may include adding a

method to calculate probabilities on adjacent cells that are

unknown.

V. CONCLUSION

Minesweeper may look like a simple board game, but

there are complex calculations that can be made to finish the

puzzle. The recursive algorithm in the form backtracking is

a great solution to this problem. The algorithm must be

implemented together with constraint propagation and

applied in Depth First Search to maximize the efficiency of

the program. A program can perfectly solve an uncovered

board but will not have the same precision in a covered

board. No matter how much modifications made in a

program, the success rate will never reach 100%, especially

in larger boards. Implementation of the backtracking

algorithm can also be applied to normal players, not just

programs. Players will have a high chance of winning

Minesweeper if they apply the backtracking algorithm

correctly, but it can be time consuming.

YOUTUBE LINK

Further explanation of this paper is available at:

https://www.youtube.com/watch?v=GuUCRP6Fd3o

ACKNOWLEDGMENT

I offer my deepest gratitude to God and everyone who

has supported me during the making of this paper. I would

also wholeheartedly thank my lecturer Dr. Nur Ulfa

Maulidevi, S.T., M.Sc. for all the knowledge and teachings

given to me during my fourth semester in Informatics.

REFERENCES

 [1] Munir, Rinaldi. (2021). Algoritma Runut-balik
(Backtracking). Available at:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-backtracking-2021-Bagian1.pdf (Last
accessed on 21 May 2022)

 [2] Munir, Rinaldi. (2021). Breadth/Depth First Search
(BFS/DFS). Available at:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/BFS-DFS-2021-Bag1.pdf (Last accessed on 21 May
2022)

 [3] Mehta, A. (2021). Minesweeper Solver. Available at:
https://www.geeksforgeeks.org/minesweeper-solver/ (Last
accessed on 21 May 2022)

 [4] Levengood, C. (2020). Solving Minesweeper in Python
as a Constraint Satisfaction Problem. Available at:
https://lvngd.com/blog/solving-minesweeper-python-
constraint-satisfaction-problem/ (Last accessed on 21 May
2022)

 [5] Becerra, D. (2015). Algorithmic Approaches to Playing
Minesweeper. Available at:
https://dash.harvard.edu/bitstream/handle/1/14398552/BECER
RA-SENIORTHESIS-2015.pdf (Last accessed on 21 May
2022)

STATEMENT

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini adalah tulisan
saya sendiri, bukan saduran, atau terjemahan dari makalah orang lain, dan

bukan plagiasi.

Bandung, 22 Mei 2022

Nayotama Pradipta 13520089

https://www.youtube.com/watch?v=GuUCRP6Fd3o
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag1.pdf
https://www.geeksforgeeks.org/minesweeper-solver/
https://lvngd.com/blog/solving-minesweeper-python-constraint-satisfaction-problem/
https://lvngd.com/blog/solving-minesweeper-python-constraint-satisfaction-problem/
https://dash.harvard.edu/bitstream/handle/1/14398552/BECERRA-SENIORTHESIS-2015.pdf
https://dash.harvard.edu/bitstream/handle/1/14398552/BECERRA-SENIORTHESIS-2015.pdf

